Compressive Sensing of Sparse Tensors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Sensing Reconstruction for Sparse 2D Data

In this paper we study the compressive sensing effects on 2D signals exhibiting sparsity in 2D DFT domain. A simple algorithm for reconstruction of randomly under-sampled data is proposed. It is based on the analytically determined threshold that precisely separates signal and non-signal components in the 2D DFT domain. The algorithm operates fast in a single iteration providing the accurate si...

متن کامل

Sparse Bayesian Learning in Compressive Sensing

Traditional Compressive Sensing (CS) recovery techniques resorts a dictionary matrix to recover a signal. The success of recovery heavily relies on finding a dictionary matrix in which the signal representation is sparse. Achieving a sparse representation does not only depend on the dictionary matrix, but also depends on the data. It is a challenging issue to find an optimal dictionary to recov...

متن کامل

Optimized Sparse Projections for Compressive Sensing

We consider designing a sparse sensing matrix which contains few non-zero entries per row for compressive sensing (CS) systems. By unifying the previous approaches for optimizing sensing matrices based on minimizing the mutual coherence, we propose a general framework for designing a sparse sensing matrix that minimizes the mutual coherence of the equivalent dictionary and is robust to sparse r...

متن کامل

Two algorithms for compressed sensing of sparse tensors

Compressed sensing (CS) exploits the sparsity of a signal in order to integrate acquisition and compression. CS theory enables exact reconstruction of a sparse signal from relatively few linear measurements via a suitable nonlinear minimization process. Conventional CS theory relies on vectorial data representation, which results in good compression ratios at the expense of increased computatio...

متن کامل

Robust compressive sensing of sparse signals: a review

Compressive sensing generally relies on the l2 norm for data fidelity, whereas in many applications robust estimators are needed. Among the scenarios in which robust performance is required, applications where the sampling process is performed in the presence of impulsive noise, i.e. measurements are corrupted by outliers, are of particular importance. This article overviews robust nonlinear re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Image Processing

سال: 2014

ISSN: 1057-7149,1941-0042

DOI: 10.1109/tip.2014.2348796